

Climate policies that achieved major emission reductions: Global evidence from two decades

Dr. Moritz Schwarz

RESEARCH

Climate policies that achieved major emission reductions: Global evidence from two decades

Annika Stechemesser^{1,2,3}*, Nicolas Koch^{1,2,4}*, Ebba Mark^{5,6,7}, Elina Dilger¹, Patrick Klösel^{1,2}, Laura Menicacci¹, Daniel Nachtigall⁸, Felix Pretis^{5,9}, Nolan Ritter^{1,2}, Moritz Schwarz^{1,5,6,10}, Helena Vossen¹, Anna Wenzel¹

Meeting the Paris Agreement's climate targets necessitates better knowledge about which climate policies work in reducing emissions at the necessary scale. We provide a global, systematic ex post evaluation to identify policy combinations that have led to large emission reductions out of 1500 climate policies implemented between 1998 and 2022 across 41 countries from six continents. Our approach integrates a comprehensive climate policy database with a machine learning–based extension of the common difference-in-differences approach. We identified 63 successful policy interventions with total emission reductions between 0.6 billion and 1.8 billion metric tonnes CO₂. Our insights on effective but rarely studied policy combinations highlight the important role of price-based instruments in well-designed policy mixes and the policy efforts necessary for closing the emissions gap.

Ever more climate policies implemented over last 20 years

... and experience with hundreds of diverse climate policy instruments

The policy evaluation gap

- There is **neither consensus in science nor policy** as to which types and combinations of policy instruments lead to meaningful emission reductions
- Most empirical research focuses on effect of few headline policy instruments; countless other policies are either sparsely evaluated or not at all
- Focus on single policies in isolation prevents systematic learning about prevalent policy mixes

Overview:

Global, systematic *ex-post* evaluation identifying policy combinations that have led to **large emissions reductions**

Novelty:

- (1) First causal impact assessment at global scale based on a transparent and reproducible statistical framework
- (2) New database of **1,500 climate policies from 1998-2022 across 41 countries** in six continents
- (3) Entire spectrum of instruments without subjective, a-priori selection for evaluation (instead: data-driven procedure using machine learning)

Step 1: Detecting emission reduction

CO₂ Emissions data from 4 sectors (2000-2020) Buildings Electricity Industry Transport **Developed** economies **Developing economies** (EDGAR) Emissions Database for **Global Atmospheric Research**

Agnostically detect structural breaks in emissions using machine learning...

... in a causal framework with control group

NB: Approach targets large emission reductions (required min. effect $\approx 5-10\%$)

We detect 69 breaks

... with average emission reduction of 19 percent

Emission reductions on a magnitude that matches zero-emission targets are possible

Step 2: Policy Attribution

Specify policy instruments behind breaks based on comprehensive, internationally-harmonized policy inventory

Analyze successful policies and policy mixes

Headline results

- We identified successful policy interventions with total emission reductions between
 0.6 billion and 1.8 GtCO₂. UN estimates quantify a median emission gap of
 23 GtCO₂eq by 2030. The identified measures could close this gap by 26 41%.
- Climate policies are more effective as part of a mix: In the majority of cases, effect sizes are larger if a policy instrument is part of a policy mix rather than implemented alone.
- Developed and developing countries have different climate policy needs: In developed countries, pricing stands out, whereas in developing countries, regulation is the most powerful policy.
- Pricing-based instruments tend to amplify the effect sizes of other policy types across sectors.

Electricity

United Kingdom

Combination of:

- mid-2013 introduction of a **carbon price floor** for UK power producers.
- command-and-control measures (renewable portfolio standards, renewable expansion planning, stricter air pollution standards, and the announcement of a phase-out of coal power plants)
- *other market-based incentives* (**renewable feed-in tariff and auctions**).

Price instruments are often the complement enabling large reductions

... make popular regulations & subsidy schemes effective (or more effective) in inducing large emission reductions

Why: Complement incentives and address limitations, such as rebound effects and narrow scope (e.g. only new cars/appliances)

Effekt of Adoption subsidies

Climate Policy Explorer

Released alongside the paper to help point decision makers towards powerful policy designs

http://climate-policy-explorer.pik-potsdam.de/

Policy conclusions

- Focus on technology standards and avoid lock-in high growth sectors (industry, electricity in developing countries)
- Build on carbon pricing and adoption subsidies in established sectors
- Sectors with a large number of actors (buildings, transp.) should use more and diverse instruments in a mix
- Leverage key climate policy actors in non-liberalised markets like state-owned enterprises
- Consider the social dimension of policies lack of social consideration likely leads to low ambition

Conclusions

- 1. Emission reductions on a magnitude that matches zero-emission targets are possible but need to be scaled!
- 2. Pricing is often a critical element of effective policy mixes
- 3. Shift from one-size-fits-all to sector and country-specific best practices

Thank you!

Find the Climate Policy Explorer at http://climate-policy-explorer.pik-potsdam.de/

Dr. Moritz Schwarz m.schwarz@tu-berlin.de

Mercator Research Institute on Global Commons and Climate Change gGmbH

Back-up

No one-size-fits-all

Effective policies differ across sectors & country groups

- Most complementarities in sectors with private consumers
- Pricing particularly effective in context w/ profit-maximizing firms
- Regulations and subsidies stand out more than price instruments in developing countries

Avg. Effect Size

... but NOT by the shotgun principle!

Method: Standard causal approach

Known assignment & known timing of single policy intervention

Two-way fixed effects estimator (TWFE)

$$y_{i,t} = lpha_i + \phi_t + au imes treat_i * post_t + arepsilon_{i,t}$$

NB: Treatment effect is equivalent to break (step-shift) in treated unit's fixed effect when switching from pre- to posttreatment

$$E\left[y_{i,t} \mid treat_i = 1\right] = \alpha_i + \tau \times \mathbb{1}_{t \ge post} + \phi_t$$

Our "reverse" causal approach

Data-driven search for step-shifts in unit fixed effects of generalized TWFE

Step 1: Agnostically allow for step-shifts for any country at any time

$$y_{i,t} = \alpha_i + \phi_t + \sum_{j=1}^N \sum_{s=2}^T \tau_{j,s} \mathbb{1}_{\{i=j,t\geq s\}} + \varepsilon_{i,t}$$

Step 2: Apply variable selection methods from machine learning to remove all but the relevant step-shifts

GETS block-search algorithm

Step 3: Attribute potential policy instruments to detected step-shifts based on rich CAPMF data

NB: Approach targets large effects (required min. effect size $\approx 5 - 10\%$)

Examples of common break detection patterns

Case 1 with immediate and strong adjustment detected as a break: A priori unknown treatment date in blue; treatment detected as a step-shift in red; and the confidence interval in grey.

Case 2 with immediate but small adjustment not detected as a break: A priori unknown treatment date in blue; treatment not detected as a step-shift in dotted red (below minimum effect size).

Case 3 with lagged strong adjustment detected as a break: A priori unknown treatment date in blue; treatment detected with delay as a step-shift within the break date confidence interval in red; and the confidence interval in grey.

Case 4 with gradual but strong adjustment detected as a break: A priori unknown treatment date in blue; treatment detected with delay as a step-shift within the break date confidence interval in red; and the confidence interval in grey.

Case 6 with slowly building up adjustment not detected as a break: A priori unknown treatment date in blue; treatment not detected as a step-shift in dotted red.

What we cannot show in our study

- This is a small contribution in a much broader debate
- Study likely to lead to an engaged academic debate with further results and studies attempting to validate our results
- Our study focuses on "major" emission reductions: minimum effect size is about 5-10 %
- Identification of policies within the estimated uncertainty of the structural break is challenging and perfect identification is not yet possible
- Long-term trends are difficult to capture
- The policy definition within the OECD database is just one approach to measure policy tightness

Climate Actions and Policies Measurement Framework

OECD Data Explorer																					
< B	ack to the search results																				
Filt	ers	✓ Applied filters 34 Reference area: × Austria × Measure: × Policy stringency × Adopted policies × Climate actions and policies: × 28 Items ×																			
~	Time period 23	690 data p	pints	Unit of measure:	× Polici	es × i	0-10 scale	× Tim	e period:	× Start:	2000 ×										
~	Reference area	⊞		1.							\bigcirc	#	<	<u>+</u>		0	2	×			
~	Measure 2	Overview	Table	Chart							Labels	Layout	Share	Downlo	bad Dev	eloper A	PI Fulls	creen			
^	Climate actions and policies 28 Climate actions and policies measurement framework ()																				
Q	Search in all 204 items below			Time period	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016
	Industry - Market-based instruments Industry - Non market-based instruments	Combined unit of measure	Measure	Climate actions and policies																	
	✓ □ Buildings - Market-based instruments	Policies	Adopted policies	Transport - Market- based instruments	E 1	E 1	E. 1	E 1	Ë 1	Ë 1	E 1	E 1	≞1	Ē 1	2	2	2	2	2	2	:
	Buildings - Non market-based instruments Transport - Market-based instruments	Policies	Adopted policies	Transport - Non market-based instruments	3	3	3	3	3	3	3	3	3	4	4	4	4	4	4	4	
^	Transport - Non market-based instruments Cross-sectoral policies	0-10 scale	Policy stringency	Transport - Market- based instruments	E 0.86	E 0.86	E 0.86	<u></u>	≞ 1.43	≞ 1.43	E 1.43	E 2.00	E 2.43	E 2.14	3.00	3.29	3.14	3.00	3.00	2.43	2.4
	∧ □ GHG emission targets	0-10 scale	Policy stringency	Congestion charges	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
~	Unit of measure 2	0-10 scale	Policy stringency	Congestion Charges	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
		0-10 scale	Policy stringency	· ETS - Transport	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
		0-10 scale	Policy stringency	· · ETS Transport - price	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
		0-10 scale	Policy stringency	ETS Transport - coverage GHG	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0

Climate Actions and Policies Measurement Framework

Climate Actions and Policies Measurement Framework

